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Abstract

The transient heat and/or mass transfer from a fluid sphere with internal circulation into a flowing fluid are in-
vestigated. The temperature and/or concentration inside the sphere are considered uniform. Two cases are studied: the
physical mass and/or heat transfer and the mass transfer accompanied by an isothermal, first-order irreversible chemical
reaction in the continuous phase. Steady, creeping flow is assumed around and inside the sphere. The problem is solved
by a finite difference method in the range of parameters, 10 < Pe <1000, 0.01 <H (@) <100, 0.1 < Da <1000. The
influence of distribution coefficient (H) or volume heat capacity ratio (@) on the transfer rate and thermal wake
phenomenon is analysed. © 2001 Elsevier Science Ltd. All rights reserved.

1. Introduction

The phenomena of momentum, heat and mass
transport between a translating sphere and its sur-
rounding fluid have been investigated intensively due to
a wide range of industrial and scientific applications.
The problem is classified as:

“external” — if the transfer resistance is assumed
negligible inside the sphere as compared to that of
continuous phase;

“internal” — if the transfer resistance is assumed
negligible in the continuous phase as compared to that
inside the sphere;

“conjugate’” — if the transfer resistance in both phases
is comparable to each other.

Clift et al. [1], Brauer [2], Brounshtein and Shegolev
[3] and Sadhal et al. [4] review the literature in this area.
In comparison with the external and internal problems,
the conjugate transfer is the subject of relatively few
theoretical and experimental studies. For this reason, in
the last two decades, the attention was focused on the
conjugate problem. The physical conjugate mass and/or
heat transfer from a sphere was studied theoretically in
[5-16]. Kleinman and Reed [17,18] and Juncu [19-22]
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theoretically analysed the conjugate transfer from or to
a sphere in the presence of a chemical reaction.

In solving the conjugate problem, the reference
boundary solutions play an important role. The
boundary cases validate the accuracy of the algorithms
used to solve the conjugate problem. When the con-
ductivity or diffusivity ratios tend to zero (or infinite) the
solution of the conjugate problem should tend to the
solution of internal (or external) problem. A careful
analysis shows that when the conductivity (diffusivity)
ratio tends to infinite, the fair limit of the conjugate
problem is the transfer from a sphere with uniform
properties (temperature or concentration). Thus, from
one point of view, the mass and/or heat transfer from a
sphere with uniform concentration and/or temperature
is one of the important boundary solutions of the con-
jugate problem. From another point of view, there are
enough real life situations well described by the model of
sphere with uniform properties. The condition of wuni-
form sphere properties is fulfilled if the diffusivity ratio,
the ratio (diffusivity ratio)/(Henry number) and the
conductivity ratio take values considerably greater than
one. Note that diffusivity and conductivity ratios are
defined as (dispersed phase property)/(continuous phase
property). Values of the diffusivity ratio considerably
greater than one are typical for gas-liquid or supercrit-
ical fluid-normal fluid systems. In usual liquid-liquid
systems, the ratio (diffusivity ratio)/(Henry number)
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Nomenclature

a radius of the sphere
Cp heat capacity

C concentration

D diffusion coefficient

Da  Damkholer number, ka®/D

H Henry number, Cy4/C at z=10
k chemical reaction rate constant
Pe Peclet number, 2Ua/D

r dimensionless radial distance in spherical
coordinate system

Sh instantaneous Sherwood number

t time

T temperature

U free stream velocity

123 dimensionless radial velocity
component

Vy dimensionless tangential velocity
component

z transformed r-coordinate

Z continuous phase dimensionless
concentration, (C — Cy)/(Cao/H — Cx)
if §$=0, C/(Cqo/H)IfS#0
(this case C,, = 0), or temperature,
(Td - TOC)/(Td,O - TDO)

Z4 dispersed phase dimensionless concentration,
(Cd — HCQO)/(CdAVO — HCQO) if S = 0, Cd/Cd,O if
S#0 (this case C, =0), or temperature,
(Ty — Too)/(Tao — To)

Greek symbols

Dy volume heat capacity ratio, pycpd/PcCp.e

i viscosity ratio

o density

0 polar angle in spherical coordinate system
T dimensionless time, D¢/a?

Subscripts

c continuous phase

d dispersed phase

0 initial condition

00 large distance from the sphere

takes values considerably greater than one if Henry
number is considerably smaller than one. Values of the
conductivity ratio considerably greater than one are not
usually encountered in liquid-liquid systems. A dis-
persed phase that contains mercury should satisfy this
condition.

The mass and/or heat transfer from a sphere with
uniform concentration and/or temperature has been
analysed, from our knowledge, by Ruckenstein et al.
[23], Soung and Sears [24], Brauer [2] and Abramzon
and Elata [25]. Ruckenstein et al. [23] analysed the mass
transfer accompanied by a first-order irreversible
chemical reaction from a single component or binary
fluid sphere. Based on the Duhamel’s theorem, bound-
ary layer theory and extended penetration model, Ruc-
kenstein et al. [23] derived analytical expressions for the
Sh number and sphere average concentration. The ex-
pressions for Sk number were deduced assuming con-
stant concentration inside the sphere. Soung and Sears
[24] solved numerically the same problems as in [23]
assuming negligible diffusion in tangential direction and
different orders of chemical reaction. Soung and Sears
[24] do not present numerical results for the binary
bubble. Brauer [2] presents results about the influence of
the distribution coefficient on the physical mass transfer.
Two sphere models are considered: the rigid sphere and
the fluid sphere with viscosity ratio zero. Abramzon and
Elata [25] analysed the physical heat transfer from a
sphere in Stokes flow. At different Pe numbers, the in-
fluence of volume heat capacity ratio on heat transfer is
studied. Abramzon and Elata [25] also presented the first
detailed investigation of the thermal wake phenomenon.

The aim of this paper is to extend the analysis from
[2,25] for the fluid sphere with internal circulation. The
problem statement is similar to that of Abramzon and
Elata [25] but the range of parameters studied (Henry
number or volume heat capacity ratio) is enlarged. In
particular, we also investigated the mass transfer ac-
companied by an isothermal, first-order irreversible
chemical reaction in the continuous phase.

2. Mathematical model

Consider a fluid sphere (bubble or drop) with radius
a suspended in an unbounded, immiscible, convective
environment with uniform velocity U. Assume that the
diffusion coefficient (thermal conductivity) of the sphere
is so high that there are no gradients within the sphere at
each instant of time. The concentration (temperature) of
the continuous phase is different from the sphere. Due to
the concentration (temperature) difference, mass (heat)
will flow from or to the sphere depending on the direc-
tion of the concentration (temperature) gradient as de-
picted by the second law of thermodynamics. Assume
also that the flow fields around and inside the sphere are
axisymmetric, steady and the particle Re number is
considerably small compared to unity (creeping flow).
Due to the complexities of the problem, we consider also
valid the following supplementary assumptions:
e there is no surface active agents;
e constant physical properties and negligible dissipa-

tions;
e the size and shape of the sphere remain constant.
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Under the scenario outlined previously, the mass
(heat) transfer is governed by the following dimension-
less balance equation:

oZ P oz oz
—+ e— R+ V=
ot 2ef

0z o0
1 (0’2 0z Z oz
S e =) — 1
e22(622+62+692+C0t 69) S (1)

In Eq. (1) the well-known transformation » = expz was
applied. The term denoted by S is the source term. The
creeping flow velocity profiles derived by Hadamard and
Rybczynski [1] are used in Eq. (1). The boundary and
initial conditions to be satisfied are [2,25]:

¢ interface (z =0)

heat balance equation

Zs =2, %:%@;1/0n%—§zzosin0d9, (2a)
mass balance equation

Zi=1Z, %:;H’l /0 %f Z:o sin 0 d0), (2b)
o free stream (z = o0)

Z=0.0, (2¢)
e symmetry axis (0 =0, )

0Z/30 =0, (2d)
¢ initial conditions

1=0.0, Z;=10, Z(z>0)=0.0. (3)

Relation (2b) shows that when S = 0, the mass and heat
balance equations are equivalent with the distribution
coefficient H playing the role of volume heat capacity
ratio, @, (or reciprocal). Two cases will be analyzed in
this study: the physical mass (heat) transfer, i.e., S =0,
and the mass transfer accompanied by a isothermal,
first-order irreversible chemical reaction in the continu-
ous phase, i.e., S = Da Z. In the first case there is no
distinction between dimensionless concentration and
dimensionless temperature. In the second case, we refer
only to mass transfer or dimensionless concentration.
The quantities of interest used to characterize the
mass (heat) transfer are:
e sphere dimensionless concentration (temperature),
Zg;
e overall instantaneous Sh number.
The overall instantaneous Sz number is given by the
relation

 — Jroz/ez _ysin0.do
- 7 .

Sh (4)

3. Method of solution

The mathematical model of the process analysed in
this study is a system formed by a partial differential
equation that describes the mass (heat) transfer in the
continuous phase and an ordinary differential equation
that describes the mass (heat) balance of the sphere.
Both equations were solved numerically. The exponen-
tially fitted finite difference scheme [26] was used for the
discretization of the partial differential equation. Nu-
merical tests were made with radial step sizes equal to
Az =1/32,1/64,1/128 and 1/256. The angular step has
the values, AQ = /32, /64, n/128, ©/256. A decom-
position procedure of the ADI type is employed. The
boundary conditions (2a) or (2b) on the surface of the
sphere (the ordinary differential equation) were inte-
grated by an explicit method (modified Euler algorithm).
The integral from relations (2a) to (2d) was calculated
by the Newton 3/8 rule using the local Sk values avail-
able at time 7. The time step was variable and changed
from the start of the computation to the final stage. The
initial and final values of the time step depend on Da, H
and Pe.

To verify the computer coding, the cases worked in
[25] were simulated. The agreement between the results
(asymptotic values of the Sk number) of Abramzon and
Elata [25] and those obtained in this work was better
than 1%.

All computations were performed on a HP-9000-715
workstation in HP FORTRAN double precision.

4. Results

For the purpose of illustrating the salient (important)
features of the present study, this section is divided into
two parts. The first part is dedicated to the analysis of
the physical mass (heat) transfer. In the second part the
mass transfer accompanied by an isothermal, first-order
irreversible chemical reaction is examined.

4.1. Physical transfer

The independent dimensionless parameters in the
present system are Pe, H (®y,) and the viscosity ratio, u.
From these parameters, Pe and H (®;,) are considered
important. In many studies, a modified Pe number that
includes the viscosity ratio is defined and used. However,
two values viewed as typically for fluid—fluid systems, 1
and 0, were considered in the present study for p. The
values assigned to Pe are: 10, 50, 100, 500 and 1000.
These values are similar to those used in [25]. Pe values
higher than 1000 are not taken into consideration in
order to avoid significant numerical errors. The values
considered for H (@), H (®y) € [0.01,100], cover the
majority of situations of practical interest.
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Table 1
Asymptotic Sh values at u =1
Pe H (dy) External
0.01 0.1 0.2 0.5 1 2 5 10 100 problem
10 0.019* 0.125* 0.244* 0.576* 1.048 1.707 2.558 2.970 3.403 3.424
50 0.060* 0.569 1.058 2.144 3.185 4.112 4.857 5.146 5.425 5.512
100 0.113 1.031 1.846 3.424 4.733 5.670 6.372 6.624 6.878 6.893
500 0.435 3.852 6.086 9.074 10.9 11.81 12.41 12.63 12.85 13.06
1000 0.835 6.635 9.802 13.4 15.42 16.28 16.82 17.1 17.29 17.43

#Steady-state value not frozen.

For a given H (®;,) value, the influence of Pe on the
transfer rate is easy foreseeable. All the investigations
about the Pe number effect on the transfer rate, inves-
tigations performed for internal, external or conjugate
problem with or without chemical reaction, show that
the increase in Pe increases the transfer rate. For this
reason, in this section, the results presentation is fo-
cussed on the influence of H (®,) on the mass (heat)
transfer. The variable considered adequate to depict the
transients of the process is the sphere dimensionless
concentration (temperature). For Sh number we con-
sider significant the asymptotic values. Special attention
receives the thermal wake phenomenon.

Tables 1 and 2 summarize the computations made
and present the asymptotic values of the Sh number. The
values depicted in Table 1 were obtained for a viscosity
ratio equal to one. Table 2 shows the asymptotic Sh
values obtained at a viscosity ratio equal to zero. The
last column of Tables 1 and 2 presents the values pro-
vided by external problem. Figs. 1-3 plot the influence
of H (®,) on the dispersed phase concentration at
Pe =10, 100 and 1000, respectively, and u = 1.

Tables 1 and 2 and Figs. 1-3 show that H (®,) in-
fluences significantly the mass (heat) transfer. The in-
crease in the Henry number (volume heat capacity ratio)
increases Sh. When H (®y,) — oo, Sh tends asymptoti-
cally to the value provided by external problem. At
small values of H (®y,), H (®y,) < 1, and Pe = 10, 50, Sh
does not tend to a frozen steady-state value (Sh de-
creases continuously in time). The values depicted in

Tables 1 and 2 correspond to the integration final when
the time variation of Sh becomes very low. In heat
transfer, the analysis made in [12-15,25] show the same
behaviour. In mass transfer, only Brauer [2] presented
similar results about the influence of H on sphere con-
centration and implicitly on Sk. However, in [2], the
relation used to compute S is slightly different from that
used in this work. For this reason, results concerning the
asymptotic Sk similar to those presented in Tables 1 and
2 cannot be viewed in [2].

It must be mentioned that in classical theories, i.e.,
film, penetration and even boundary layer, the contin-
uous phase Sh number does not depend on H. Also, the
overall mass balance equation for the sphere shows that
the time variation of the dispersed phase concentration
depends only on products as ShH or ShH~'. The results
obtained in this study show a fully different situation.
Figs. 1-3 and Tables 1 and 2 show that the solubility of
the transferring species has a distinct influence on mass
transfer rate.

The variation of the asymptotic Sh function of
H (&) can be connected to the thermal wake (TW)
phenomenon [25]. The quantity used to describe TW is
the thermal inversion point (TIP), [12]. The TIP steady
position on the sphere surface, measured from the rear
stagnation point, is plotted in Figs. 4 and 5 for viscosity
ratios equal to one and zero, respectively. The symbols
in Figs. 4 and 5 indicate the Pe value. Figs. 4 and 5 show
the existence of a critical H (®y) value that depends on
Pe and viscosity ratio. For H (®;,) values greater than

Table 2
Asymptotic Sh values at =0
Pe H (®y) External
0.01 0.1 0.2 0.5 1 2 5 10 100 problem
10 0.0222 0.153* 0.296* 0.6912 1.231 1.951 2.813 3.215 3.627 3.732
50 0.0832 0.775 1.419 2.765 3.931 4.881 5.633 5.920 6.196 6.308
100 0.165 1.470 2.567 4.519 5.910 6.894 7.610 7.872 8.120 8.281
500 0.756 5.969 8.981 12.52 14.25 15.24 15.89 16.12 16.33 16.61
1000 1.277 10.58 14.76 18.89 20.67 21.65 22.27 22.48 22.67 23.03

# Steady-state value not frozen.
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Fig. 2. Variation of the sphere concentration (temperature) with dimensionless time at Pe = 100 and viscosity ratio equal to one.

the critical value there is no thermal wake. For H (&)
values smaller than the critical value, TW increases with
the decrease in H (®y,). The increase in TW coincides to
the decrease in Sh. Figs. 4 and 5 also confirm the analysis
made in [13]. The increase in Pe from 10 to 1000 de-
creases TW. However, the increase in Pe does not de-
stroy TW. Figs. 4 and 5 show that at higher Pe, TW
extends over H (@) variation domain.

A comparison between Tables 1 and 2 and Figs. 4
and 5 shows that the viscosity ratio influences the mass
(heat) transfer. As expected, for a given Pe and H (®y,),
the decrease in p increases Sh. However, the dependence
Sh versus Pe and p can not be expressed using a modified

Pe number of the type, Pe/(1+ u). If we extend the
comparison and take into consideration the results ob-
tained in [25] for a rigid sphere in Stokes flow, we can
conclude that the velocity fields do not change the im-
portant features of the phenomena that accompanied
the mass (heat) transfer.

Table 1 also shows a very good agreement between
the results obtained in this study and those presented
in [15] at high values of conductivity ratio (100) and
the same values of the Pe number. This way, the
present computations confirm the validity of the re-
sults obtained in [15]. In addition, the asymptotic
values of the SA number obtained in this study are also
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Fig. 4. Steady-state position of the thermal inversion point on the sphere surface function of A (@) and Pe at viscosity ratio equal to

one.

used in [16] in order to verify the accuracy of the
computations.

4.2. Mass transfer accompanied by chemical reaction

In the case of mass transfer accompanied by chemical
reaction a new parameter, the Damkholer number Da,
enters in competition with Pe and H (@y). The results
obtained in the previous section show that the variation
of Pe with two orders of magnitude does not blur the
influence of H on mass transfer. The question that
naturally arises is: the presence of chemical reaction
changes or perturbs these phenomena? To find the an-
swer of this question, taking also into consideration the
results of [21], the following strategy was conceived:

e only the extreme values of Pe, i.e., Pe =10, 1000,
were considered;

e for each value of Pe, two Da values were assigned;
one considerably smaller than the Pe value and the
other equal to the Pe value.

The results obtained are presented in Table 3 and Fig. 6.

The computations were performed only for u= 1. We

limit the results presentation only to the asymptotic Sh

values and TW. We made this choice because the
asymptotic Sh and TW can express synthetically the
salient features of the process. At Da = Pe = 1000, TW
occurs only at H = 0.01. For this reason, this case is not

plotted in Fig. 6.

Table 3 shows that H influences the mass transfer
rate for all Da values or ratios Da/Pe. As expected, at
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—e—Pe =10
--e--- =50

Fig. 5. Steady-state position of the thermal inversion point on the sphere surface function of H (@) and Pe at viscosity ratio equal to

zZero.
Table 3
Asymptotic Sh values
Pe Da H
0.01 0.1 0.2 0.5 1 2 5 10 100
10 0.1 0.02¢ 0.132* 0.257* 0.607 1.10 1.78 2.65 3.07 3.51
10 0.115* 0.879* 1.64* 3.46 5.25 6.64 7.64 7.99 8.32
10 0.944 7.65 11.1 14.7 16.3 17.2 17.7 17.9 18.1
1000 1000 7.412 41.9 55.1 61.1 63.2 64.1 64.7 64.9 65.1

#Steady-state value not frozen.

0 (rad)

—=—Pe =10, Da=0.1
--e--Pe=10,Da =10
- Pe = 1000, Da = 10

Fig. 6. Steady-state position of the thermal inversion point on the sphere surface function of H, Pe and Da.

small Da values, Da = 0.1, the process is similar to the
physical transfer. The dimension of TW at Da = 0.1 is
practically equal to that at Da = 0. However, the com-
parison between Tables 1 and 3 shows an enhancement
of the mass transfer rate. This result contradicts the

assumptions practiced in classical theories. The increase
in Da from 0.1 to 10 reduces the dimension of TW. For
Da = 10, the decrease in TW dimension is higher at
Pe = 10. However, the influence of H on Sh remains
significant. At Da = 1000, even in the condition of TW
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disappearance, Sh depends on H, especially for H < 1.
These results lead to the following remark: the influence
of H on Sh cannot be explained only in terms of TW.

5. Conclusions

The physical mass and/or heat transfer and the mass
transfer accompanied by an isothermal, first-order, ir-
reversible chemical reaction in the continuous phase
from a fluid sphere in creeping flow with uniform con-
centration and/or temperature were investigated. The
range of parameters that characterizes the coupling be-
tween the two phases, namely H or ¢,, was much wider
than in previous studies of other investigators. The Pe
number takes values from 10 to 1000. The main phe-
nomenon studied was the influence of distribution co-
efficient or volume heat capacity ratio on transfer rate.

The numerical results presented in the previous sec-
tion show that H or @, affects significantly the physically
mass and/or heat transfer. The influence of H or &, on
the asymptotic S# number is related to the thermal wake
phenomena. The presence of the chemical reaction in the
continuous phase does not change significantly the in-
fluence of H on mass transfer. The increase in Da re-
duces, until disappearance, TW but does not cancel the
influence of H on mass transfer rate.

References

[1]1 R. CIlift, J.R. Grace, M.E. Weber, Bubbles, Drops and
Particles, Academic Press, New York, 1978.

[2] H. Brauer, Unsteady state mass transfer through the
interface of spherical particles — I + II, Int. J. Heat Mass
Transfer 21 (1978) 445-465.

[3] B.I. Brounshtein, V.V. Shegolev, Hydrodynamics, Mass
and Heat Transfer in Column Devices, Khimiya, Lenin-
grad, 1988 (in Russian).

[4] S.S. Sadhal, P.S. Ayyaswamy, J.N.-C. Chung, Transport
Phenomena with Drops and Bubbles, Springer, Berlin,
1996.

[5] UJ. Plocher, H. Schmidt-Traub, Instationarer Stofftrans-
port zwischen einer Einzelkugel und einer Ruhenden
umgebung, Chemie Ingr. Tech. 44 (1972) 313-319.

[6] F. Cooper, Heat transfer from a sphere to an infinite
medium, Int. J. Heat Mass Transfer 26 (1977) 991-993.

[7] B. Abramzon, I. Borde, Conjugate unsteady heat transfer
from a droplet in creeping flow, A.IL.Ch.E. JL. 26 (1980)
526-544.

[8] D.L.R. Oliver, J.N.-C. Chung, Conjugate unsteady heat
transfer of a translating droplet al low Reynolds number,
Int. J. Heat Mass Transfer 29 (1986) 879-887.

[9] Gh. Juncu, R. Mihail, The effect of diffusivities ratio on
conjugate mass transfer from a droplet, Int. J. Heat Mass
Transfer 30 (1987) 1223-1226.

[10] D.L.R. Oliver, J.N.-C. Chung, Unsteady conjugate heat
transfer from a translating fluid sphere at moderate
Reynolds number, Int. J. Heat Mass Transfer 33 (1990)
401-408.

[11] H.D. Nguyen, S. Paik, J.N.-C. Chung, Unsteady conjugate
heat transfer associated with a translating droplet: a direct
numerical simulation, Numer. Heat Transfer A 24 (1993)
161-180.

[12] Gh. Juncu, Conjugate unsteady heat transfer from a sphere
in Stokes flow, Chem. Engrg. Sci. 52 (1997) 2845-2848.

[13] Gh. Juncu, The influence of the continuous phase Pe
numbers on thermal wake phenomenon, Heat Mass
Transfer (Wéarme- und Stoffiibertragung) 34 (1998) 203—
208.

[14] Gh. Juncu, Unsteady conjugate heat transfer for a single
particle and in multi-particle systems al low Reynolds
numbers, Int. J. Heat Mass Transfer 41 (1998) 529-536.

[15] Gh. Juncu, The influence of the physical properties ratios
on the conjugate heat transfer from a drop, Heat Mass
Transfer (Warme- und Stoffiibertragung) 35 (1999) 251-
257.

[16] Gh. Juncu, The influence of the Henry number on the
conjugate mass transfer. I — Physical mass transfer, Heat
Mass Transfer (Warme- und Stoffiibertragung) (submitted
for publication).

[17] L.S. Kleinman, X.B. Reed Jr., Interphase mass transfer
from bubbles, drops and solid spheres: diffusional trans-
port enhanced by external chemical reaction, Ind. Engrg.
Chem. Res. 34 (1995) 3621-3631.

[18] L.S. Kleinman, X.B. Reed Jr., Unsteady conjugate mass
transfer between a single droplet and an ambient flow with
external chemical reaction, Ind. Engrg. Chem. Res. 35
(1996) 2875-2888.

[19] Gh. Juncu, Conjugate heat and mass transfer from a solid
sphere in the presence of a nonisothermal chemical
reaction, Ind. Engrg. Chem. Res. 37 (1998) 1112-1121.

[20] Gh. Juncu, Conjugate mass transfer to a sphere accom-
panied by a second order chemical reaction inside the
sphere, Ind. Engrg. Chem. Res. (submitted for publication).

[21] Gh. Juncu, A note on the unsteady conjugate mass transfer
between a single drop and an ambient flow with external
chemical reaction, Ind. Engrg. Chem. Res. (submitted for
publication).

[22] Gh. Juncu, The influence of the Henry number on the
conjugate mass transfer. Il — Mass transfer accompanied
by a first-order irreversible chemical reaction, in prepara-
tion.

[23] E. Ruckenstein, V.-D. Dang, W.N. Gill, Mass transfer with
chemical reaction from spherical one or two component
bubbles or drops, Chem. Engrg. Sci. 26 (1971) 647-668.

[24] W.Y. Soung, J.T. Sears, Effect of reaction order and
convection around gas-bubbles in a gas-liquid reacting
system, Chem. Engrg. Sci. 30 (1975) 1353-1356.

[25] B. Abramzon, C. Elata, Unsteady heat transfer from a
single sphere in Stokes flow, Int. J. Heat Mass Transfer 27
(1984) 687-695.

[26] P.W. Hemker, A numerical study of stiff two-point
boundary problems, Ph.D. Thesis, Mathematisch Cen-
trum, Amsterdam, 1977.



